Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447062

RESUMO

Bolboschoenus planiculmis (F.Schmidt) T.V.Egorova is a typical wetland plant in the species-rich Cyperaceae family. This species contributes prominently to carbon dynamics and trophic integration in wetland ecosystems. Previous studies have reported that the chromosomes of B. planiculmis are holocentric; i.e. they have kinetic activity along their entire length and carry multiple centromeres. This feature was suggested to lead to a rapid genome evolution through chromosomal fissions and fusions and participate to the diversification and ecological success of the Bolboschoenus genus. However, the specific mechanism remains uncertain, partly due to the scarcity of genetic information on Bolboschoenus. We present here the first chromosome-level genome assembly for B. planiculmis. Through the integration of high-quality long-read and short-read data, together with chromatin conformation using Hi-C technology, the ultimate genome assembly was 238.01 Mb with a contig N50 value of 3.61 Mb. Repetitive elements constituted 37.04% of the genome, and 18,760 protein-coding genes were predicted. The low proportion of long terminal repeat retrotransposons (∼9.62%) was similar to that reported for other Cyperaceae species. The Ks (synonymous substitutions per synonymous site) distribution suggested no recent large-scale genome duplication in this genome. The haploid assembly contained a large number of 54 pseudochromosomes with a small mean size of 4.10 Mb, covering most of the karyotype. The results of centromere detection support that not all the chromosomes in B. planiculmis have multiple centromeres, indicating more efforts are needed to fully reveal the specific style of holocentricity in cyperids and its evolutionary significance.


Assuntos
Cyperaceae , Ecossistema , Cromossomos , Centrômero/genética , Cariótipo , Cromatina , Cyperaceae/genética , Filogenia
2.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503982

RESUMO

Kobresia species are common in meadows on the Qinghai-Tibet Plateau. They are important food resources for local livestock, and serve a critical foundation for ecosystem integration. Genetic resources of Kobresia species are scarce. Here, we generated a chromosome-level genome assembly for K. myosuroides (Cyperaceae), using PacBio long-reads, Illumina short-reads, and Hi-C technology. The final assembly had a total size of 399.9 Mb with a contig N50 value of 11.9 Mb. The Hi-C result supported a 29 pseudomolecules model which was in consistent with cytological results. A total of 185.5 Mb (44.89% of the genome) transposable elements were detected, and 26,748 protein-coding genes were predicted. Comparative analysis revealed that Kobresia plants have experienced recent diversification events during the late Miocene to Pliocene. Karyotypes analysis indicated that the fission and fusion of chromosomes have been a major driver of speciation, which complied with the lack of whole-genome duplication (WGD) in K. myosuroides genome. Generally, this high-quality reference genome provides insights into the evolution of alpine sedges, and may be helpful to endemic forage improvement and alpine ecosystem preservation.


Assuntos
Cyperaceae , Ecossistema , Tibet , Genoma , Cariótipo , Filogenia
3.
Mitochondrial DNA B Resour ; 7(1): 241-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087941

RESUMO

Bolboschoenus planiculmis is a typical wetland sedge with both ecological and agricultural value. We report the first complete chloroplast genome sequence of this species. The total genome size is 186,539 bp, containing a large single-copy region (LSC) of 104,654 bp, a small single copy region (SSC) of 9,659 bp and two inverted repeats (IRs) of 36,113 bp by each. The GC content is 33.59%. The genome encodes 105 unique genes, including 71 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis shows this species has a strong sister relationship with Cyperus. Our work could be helpful in understanding the evolution of Cyperaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...